The temperature of the Icelandic mantle from olivine-spinel aluminum exchange thermometry

Potential temperature estimates at Iceland

A comparison of previous estimates of mantle potential temperature at Iceland (red horizontal bars) to our new estimate based on combining crystallisation temperatures with crustal thickness and geochemical constraints (red/yellow histograms).  Estimates of mantle potential temperature for MORB are shown for reference in blue.

Variations in mantle temperature are a primary control on the melting behaviour of the mantle. Despite its importance for understanding present day volcanism and the thermal evolution of the Earth, mantle temperature has remained difficult to quantify. Proxies, such as crustal thickness, seismic velocity, and melt chemistry must be used; however, each suffers from its own uncertainties and trade-offs with other equally uncertain parameters. Melting anomalies, such as Iceland, have been variously linked to raised mantle temperature, unusually fusible mantle, or enhanced mantle flow.
Several studies have recently used olivine crystallisation temperatures, derived from olivine-spinel aluminium-exchange thermometry, as a proxy for mantle temperature. When offsets in olivine crystallisation temperatures are used to infer mantle temperature variation directly, it is implicitly assumed the method does not suffer from trade-offs arising from greater mantle fusibility or enhanced mantle flow.

Summary of new crystallisation temperatures from Iceland

Summary of the new crystallisation temperature estimates we made in this study.  Crystallisation temperatures were calculated from the composition of olivine-spinel pairs using the Wan et al. (2008) and Coogan et al. (2014) Al-exchange thermometer.

Using a new set of crystallisation temperatures determined for four eruptions from the Northern Volcanic Zone of Iceland, we demonstrate crustal processes, rather than mantle processes, are responsible for the crystallisation temperature variation within our dataset. However, the difference between Icelandic crystallisation temperatures and those from MORB, are most easily accounted for by substantial mantle temperature variations between the two locations.

The thermal structure of the mantle melting region will determine the chemical and thermal properties of the melts entering the crust. As lithological heterogeneity can exert a large effect on the thermal structure of the melting region, we assess its effect on crystallisation temperature using a forward thermal model of multi-lithology melting. Using crystallisation temperature estimates from Iceland and MORB as examples, we demonstrate that in the absence of further constraints on the thermal structure of the melting region (e.g. crustal thickness), crystallisation temperature provides only a weak constraint on mantle temperature.

By inversion of our thermal model, fitting for crystallisation temperature, crustal thickness, and fraction of bulk crust derived from pyroxenite melting, we demonstrate that a mantle temperature excess over ambient mantle is required for Iceland. We estimate a mantle temperature of \mathsf{1480^{+37}_{-30}}°C for Iceland, and \mathsf{1318^{+44}_{-32}}°C for MORB.


Online [publisher]: https://dx.doi.org/10.1002/2016GC006497

Reference: Simon Matthews, Oliver Shorttle, John Maclennan. The temperature of the Icelandic mantle from olivine-spinel aluminum exchange thermometry. Geochemistry, Geophysics, Geosystems (2016)

PublicityA significantly hotter mantle beneath Iceland

A significantly hotter mantle beneath Iceland

BSE image of Borgarhraun olivine

A false color image of an olivine crystal (centre) found in the Borgarhraun eruption of north Iceland. The color picks out variations in the crystal’s composition. We estimated the temperature at which the crystal grew by comparing the composition of the olivine to that of the spinel crystal which has been trapped inside it (small red circle inside crystal) . Horizontal scale = 1.5mm.

We have shown that the Icelandic mantle is unusually hot, a result which has been featured in AGU’s Eos magazine.  We measured the chemistry of olivine and spinel crystals that grew from magmas sourced directly from the Icelandic mantle. These crystals recorded crystallisation at almost 1400°C, indicating that the underlying mantle must be at least this hot. By developing a model to account for how the temperature of the mantle changes during melting, we were able to show that this crystallisation temperature is consistent with a mantle temperature prior to melting of closer to 1500°C.  This is more than 160°C hotter than the mantle underlying most regions on Earth.

Read the full article on Eos: A significantly hotter mantle beneath Iceland

And head here for a more detailed summary of the science.

A statistical description of concurrent mixing and crystallisation during MORB differentiation: implications for trace element enrichment

Melt formation, mixing, and transport schematic

A cartoon of the processes operating from mantle to crust, which give rise to the appearance of trace element over-enrichment in mid-ocean ridge basalts. Diverse melts are produced in the mantle, potentially from chemically heterogeneous sources (left). These melts are transported out of the mantle by channelised flow, which preserves some primary heterogeneity of the melts supplied to the crust (centre). In the crust melts fractionate crystal phases and mix (centre and right).  The supply of heterogenous melts to crustal magma chambers, and their subsequent mixing, gives rise to apparent trace element over-enrichment in the final erupted basalt.

Basalts are our window into Earth’s chemical structure, and being a product of mantle melting and transport, constrain the processes by which it continues to differentiate.  However, to interpret the basalt record in terms of mantle source and melting conditions requires our being able to see through the processes that affect basalt chemistry following melting, during their transport through the mantle, and their storage in the crust.  The extent to which basalts reflect mantle processes vs. crustal processes has been a topic of long-running debate, with workers such as Klein and Langmuir (1987) and Gale et al. (2014) arguing for the importance of mantle processes, whereas more recently O’Neill and Jenner (2012) and Coogan and O’Hara (2015) have emphasised the role of crustal magma chambers in modifying the trace and minor element chemistry of basalts.  A key observation in this debate has been the presence of trace element over-enrichment in mid-ocean ridge basalts, whereby differentiated basalts (those with low MgO) appear to have higher concentrations of incompatible trace elements than can be accounted for by simple fractional crystallisation (see figure below).

Trace element enrichment gradients.

The rate of enrichment of trace elements during magmatic differentiation (expressed as the gradient in trace element – MgO space). More negative numbers indicate stepper gradients, which when they fall below the orange line, cannot be accounted for by simple fractional crystallisation.

In this article we demonstrate how apparent trace element over-enrichment during differentiation can result simply from the chemically heterogeneous melts being supplied to the crust.  The key aspect of the model is that once resident in crustal magma chambers, the probability of melts mixing is proportional to their degree of differentiation (a proxy for their residence time).  Therefore, as melts differentiate, they progressively interact with other melts, until at low MgO (~5  wt%), magmas have a composition close to that of the mean melts being supplied from the mantle.  A consequence of this process, which we call concurrent mixing and crystallisation (CMC; Maclennan, 2008), is that the overall trend of trace element enrichment during differentiation is steeper than what it would be predicted in the absence of mixing.  What’s more, the most incompatible elements have the most variable abundance in melts supplied to the crust, and therefore exhibit the greatest degree of over-enrichment.  Thus, this model reproduces the observations presented in the figure above, whereby highly incompatible elements such as Th and U have the steepest enrichment gradients.

The importance of these results is that in our model, although mixing destroys much mantle-derived chemical variability and therefore information on the melting and melt transport process, the mean composition of the magmas supplied from the mantle is not affected.  As such, magmas retain bulk information on their sources and conditions of formation.  This means that global correlations like those established by Klein and Langmuir (1987) and Gale et al. (2014) will be valid, and the elemental ratios forming the basis for isotope evolution models of the Earth’s mantle (e.g., Sm/Nd for the <sup>143</sup>Nd isotope system) will not have been perturbed.


Online [publisher]: https://dx.doi.org/10.1093/petrology/egw056

Reference: Oliver Shorttle, John F. Rudge, John Maclennan, and Ken Rubin. Journal of Petrology (2016): 1-35, doi:10.1093/petrology/egw056.

AGU 2015

I will be at AGU for the whole week: on Thursday speaking about work we have been doing combining geochemical and geophysical indicators of mantle potential temperature to understand what drives melting anomalies on Earth; followed by a talk on Friday presenting some early results investigating the thermodynamics of melt transport and the chemical signals this produces in basalts. On Wednesday Simon Matthews has a poster with new Al-olivine thermometry data from Iceland and neat modelling results showing how petrological estimates of crystallisation temperature can be used to estimate mantle potential temperature – the essence: mantle lithology matters!

Lithology and temperature: How key mantle variables control rift volcanism


Authors: Oliver Shorttle, Mark Hoggard, Simon Matthews, John Maclennan

Session: T44C: Tectonic, Magmatic, and Geodynamic Studies of Extensional Processes: Applications in Iceland and the Nubia-Somalia-Arabia Plate System II

When/where: Thursday 17th December, 16:15 in Moscone South 304

Here we pick apart the various roles of mantle potential temperature and source composition in generating melting anomalies on Earth.  Taking Iceland as a case study, we show how crustal production rates (a proxy for melt flux) and estimates of the enriched-lithology’s melt supply to the crust can be used to constrain the source composition.  Knowing the source composition we can then make more accurate estimates of the thermal structure of the melting region, and so invert petrological estimates of crystallisation temperature into mantle potential temperature. Irrespective of Iceland’s source composition, the mantle must represent a thermal anomaly of at least 100ºC.

We extend our analysis to rifting globally by using a compilation of continental margin crustal thickness estimates. By making reasonable assumptions about mantle source composition, these crustal thickness estimates track the post break-up thermal evolution of the mantle. These observations allow us to evaluate the hypothesis that even away from plumes continental insulation drives up mantle potential temperature prior to rifting. However, the crustal thickness records provide little evidence for a long term increase of mantle temperature due to continental insulation: either it decays rapidly following break-up, or was not generated during the pre-break-up lifetime of the continent.

Geochemical constraints on magma formation and transport processes


Authors: Oliver Shorttle, Paula Antoshechkina, Paul Asimow, Rajdeep Dasgupta, John Rudge

Session: DI51C: Melt and Liquids in Earth and Planetary Interiors II

When/where: Friday 18th December, 08:30 in Moscone South 303

The key question motivating this work is what proportion of geochemical diversity in basalts can be attributed to the melt transport history a given melt has experienced? The implications of this question are broad, as it leads to us questioning the origin of geochemical differences observed between ocean islands and mid-ocean ridges, or as a function of spreading rate and mantle potential temperature: Are these various tectonic regimes driving different styles and rates of melt transport that map into geochemical differences?

To answer these questions we performed some simple calculations of focussed melt flow to quantify the geochemical diversity generated just from varying the amount of melt focusing.  We observe a significant response in terms of the major and trace element chemistry of basalts, suggesting that some portion of local geochemical variability could be mapping in the diverse transport history melts have experienced through the mantle.

The Temperature of the Icelandic Mantle Plume from Aluminium-in-Olivine Thermometry


Authors: Simon Matthews, Oliver Shorttle, John Maclennan

Session: DI31B: Melt and Liquids in Earth and Planetary Interiors

When/where: Wednesday 16th December, 08:00 in Moscone South – Poster Hall

Petrological estimates of mantle potential temperature are a key observation underpinning our models of mantle geodynamics. However, the process of going from the direct observable, a crystallisation temperature, back into a mantle potential temperature is not straight forward. A crystallisation temperature at the very list gives a minimum bound on the mantle temperature, but depending on the thermal history of the magma that crystal grew from, and the magma’s origin within the melting region, that temperature could be 100ºC less than the temperature of initial mantle melting.  To recover the mantle temperature before melting requires a model for the thermal evolution of the mantle during decompression and partial melting.

Here we combine a multi-lithology model of mantle melting with new Al-olivine thermometer estimates for the crystallisation temperature of forsteritic Icelandic olivines. By using geochemical and geophysical constraints on melt production we are able to arrive at a valid range of potential temperatures for the Icelandic mantle that are consistent with available observations.  Combining constraints in this way enables us to propagate uncertainty through relevant model parameters and analytical uncertainty on the crystallisation temperature, to obtain rigorously defined uncertainties. All viable model solutions show the Icelandic mantle to be significantly hotter than typical mid-ocean ridge mantle.